The pure-projective ideal of a module category
نویسندگان
چکیده
منابع مشابه
Pure-periodic Modules and a Structure of Pure-projective Resolutions
We investigate the structure of pure-syzygy modules in a pure-projective resolution of any right R-module over an associative ring R with an identity element. We show that a right R-module M is pure-projective if and only if there exists an integer n ≥ 0 and a pure-exact sequence 0 → M → Pn → · · · → P0 → M → 0 with pure-projective modules Pn, . . . , P0. As a consequence we get the following v...
متن کاملApproximate $n-$ideal amenability of module extension Banach algebras
Let $mathcal{A}$ be a Banach algebra and $X$ be a Banach $mathcal{A}-$bimodule. We study the notion of approximate $n-$ideal amenability for module extension Banach algebras $mathcal{A}oplus X$. First, we describe the structure of ideals of this kind of algebras and we present the necessary and sufficient conditions for a module extension Banach algebra to be approximately n-ideally amenable.
متن کاملA Note on the Radical of a Module Category
We characterize the finiteness of the representation type of an artin algebra in terms of the behavior of the projective covers and the injective envelopes of the simple modules with respect to the infinite radical of the module category. In case the algebra is representation-finite, we show that the nilpotency of the radical of the module category is the maximal depth of the composites of thes...
متن کاملMeasure, category and projective wellorders
Every admissible assignment of א1 -א2 to the cardinal invariants in the Cichón diagram can be realized in a generic extension of a model of CH obtained as the countable support iteration of proper forcing notions (see [2, Chapter 7]). With every invariant in the Cichon diagram, one can associate a forcing notion which increases its value without affecting the values of the other invariants. Thu...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1996
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-71-2-203-215